Synaptic Targeting of Kainate Receptors.
نویسندگان
چکیده
When native and recombinant kainate receptors (KARs) are compared, there is a mismatch in several of their functional properties. While both generate currents, synaptic responses mediated by KARs have rarely observed in cultured hippocampal neurons. The recent discovery of auxiliary proteins for KARs, such as Netos, offers an explanation for these discrepancies. We found that the GluK5 KAR subunit and the ancillary proteins, Neto1 and Neto2, are not expressed by hippocampal neurons in culture. Therefore, we used this model to directly test whether these proteins are required for the synaptic localization of KARs. Transfection of GluK4, GluK5, Neto1, or Neto2 into hippocampal neurons was associated with the appearance of synaptic KAR-mediated EPSCs. However, GluK4 or GluK5 alone produced synaptic activity in a significant proportion of cells and with reliable event frequency. While neurons expressing GluK4 or GluK5 subunits displayed synaptic responses with rapid kinetics, the expression of Neto proteins conferred these synaptic responses with their characteristic slow onset and decay rates. These data reveal some requirements for KAR targeting to the synapse, indicating a fundamental role of high affinity KAR subunits in this process.
منابع مشابه
Development of Microfluidic Applications to Study the Role of Kainate Receptors in Synaptogenesis
................................................................................................................................ 1 1 Literature Review ............................................................................................................... 2 1.1 Kainate Receptors ........................................................................................................ 2 1.1...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملRecruitment of the kainate receptor subunit glutamate receptor 6 by cadherin/catenin complexes.
Kainate receptors modulate synaptic transmission by acting either at presynaptic or at postsynaptic sites. The precise localization of kainate receptors as well as the mechanisms of targeting and stabilization of these receptors in neurons are largely unknown. We have generated transgenic mice expressing the kainate receptor subunit glutamate receptor 6 (GluR6) bearing an extracellular myc epit...
متن کاملSynaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins.
Auxiliary proteins modify the biophysical function and pharmacological properties of ionotropic glutamate receptors and likely are important components of receptor signaling complexes in vivo. The neuropilin and tolloid-like proteins (NETO) 1 and NETO2, two closely related CUB domain-containing integral membrane proteins, were identified recently as auxiliary proteins that slowed GluK2a kainate...
متن کاملNeto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1
Kainate receptors (KARs) are a subfamily of glutamate receptors mediating excitatory synaptic transmission and Neto proteins are recently identified auxiliary subunits for KARs. However, the roles of Neto proteins in the synaptic trafficking of KAR GluK1 are poorly understood. Here, using the hippocampal CA1 pyramidal neuron as a null background system we find that surface expression of GluK1 r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2016